5-1 Reimann Sums #### **Learning Objectives:** I can approximate the area under a curve using any of the Rectangle Approximation Methods or the Trapezoid Method. Slope of the distance function is the velocity. In this example, velocity is a constant. This is the graph of an object moving at a constant velocity. What does the area under the curve from t=a to time t=b mean? What if instead of a constant velocity, we had a velocity that varied over time? Ex1. Estimate the area under each curve ### **RRAM** $f(x)=x^2sinx$ over [1,3] | Plot1 Plot2 Plot3 | X | Y1 | Y2 | | |---------------------------------------|---------------------------------|-------------------------------------|--------------------------------------|--| | \Y₁∎X ² sin(X) | 1.3333
1.6667
2
2.3333 | 1.7279
2.765
3.6372
3.9368 | .57596
.92167
1.2124
1.3123 | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 2.6667
3 | 3.2517
1.2701 | 1.0839
.42336 | | | \Υч=
\Υs= | X= | | | | ### **MRAM** $f(x)=x^2sinx$ over [1,3] # **Homework** Pg 270 # 9-12, 16, 18, 28 4sub #9 LRAM #10 RRAM 6 sub #11 MRAM #12 Trap 5 s u b 3 500 6 sub-intervals